Defining Metrics and Tracking Progress for lonosphere Disturbances Modeling:

Highlights from the International Forum on Space Weather Capabilities Assessment

Ionosphere Working Group

Goals of the Ionosphere Working Group

- Establish metrics agreed upon by the community
- Evaluate where we stand with ionosphere/thermosphere prediction
- Provide a benchmark against which future models can be assessed

Four Working Teams

Team	Primary Lead and co-leads	Linkage to LWS SSA	Example of Applications
Neutral Density and Orbit Determination at LEO	S. Bruinsma , S. Solomon, T. Fuller- Rowell, E. Sutton	SSA-2: Satellite Drag	space object orbital elements
Global & Regional TEC	L. Scherliess, R. Calfas	SSA-4:TEC	SSA-4:TEC HF communication, GPS positioning and navigation
Ionosphere Plasma Density: NmF2/foF2, hmF2	I. Tsagouri, M. Angling, J. Shim		
Ionosphere Scintillation	E. Yizengaw	Schullation	

Selection of Time Intervals

- Mainly based on data availability
- Proposed Storm Events:

Date	Min. Dst (nT)	
29 March – 3 April 2001	-387	
18 - 31 July 2004	-170	
14 - 16 May 2005	-247	
8 - 11 March2012	-131	
16 - 20 March 2013	-132	
31 May – 4 June 2013	-119	
16 - 20 March 2015	-222	
21 - 24 June 2015	-204	

more new events will be added

- Proposed to study entire year 2012:
 - Understand quiet times
 - Understand importance of background conditions

Global TEC Modeling Validation:

SSA-4, TEC Forecasting Capability

• TEC gradient:

For example, new index G45-55 will be calculated as the maximum absolute longitudinal TEC gradient in the midhigh latitudes (45° < geo. lat. < 55°) in North American and European Sectors.

- 1D quantity for time-series model/data comparison
- Advantage of this index is that it is largely ignorant of biases but captures dynamical response due to storms!

Example of G55 Index

G55 was calculated every 15 minutes on a 1° grid as the maximum absolute longitudinal TEC gradient at 55° geographic latitude.

Example of G45-55 Index

Extend latitude range (45 $^{\circ}$ $^{\circ}$ 55 $^{\circ}$) and longitude resolution (5 $^{\circ}$): considering only American and European sectors

Global TEC Modeling Validation:

SSA-4, TEC Forecasting Capability

• TEC gradient:

For example, new index G45-55 will be calculated as the maximum absolute longitudinal TEC gradient in the midhigh latitudes (45° < geo. lat. < 55°) in North American and European Sectors.

Normalized percentage change from baseline:

n_dTEC= [dTEC[%] -ave_dTEC[%]]/std_dTEC[%]

- o max. of n_dTEC
- o (max. of n_dTEC + max. of |n_dTEC|)/2

Example: dTEC[%] vs Normalized dTEC[%]

— GPS_TEC
— CTIPE
— TIEGCM

solid lines: dTEC with median, dotted: dTEC with average of 5 quietest days

- Larger nighttime dTEC[%] due to smaller TEC_median
- To remove local time dependence, dTEC[%] is normalized using average and standard deviation of dTEC[%] over 30 days:

n_dTEC=
[dTEC[%] -ave_dTEC[%]]/std_dTEC[%]
(Nishioka, M., T. Tsugawa, H. Jin, and M. Ishii,
2017)

Global TEC Modeling Validation:

SSA-4, TEC Forecasting Capability

• TEC gradient:

For example, new index G45-55 will be calculated as the maximum absolute longitudinal TEC gradient in the midhigh latitudes (45° < geo. lat. < 55°) in North American and European Sectors.

• Normalized percentage change from baseline:

n_dTEC= [dTEC[%] -ave_dTEC[%]]/std_dTEC[%]

- o max. of n_dTEC
- (max. of n_dTEC + max. of |n_dTEC|)/2
- TEC difference/average among several stations (~12) strategically selected

Ionospheric Scintillation Modeling Validation:

SSA-5, Scintillation Forecasting Capability

- S4 index
- ROTI (Rate of TEC index:

STD of the ratio of change of TEC)

- Onset time at a particular level
- Peak value
- Duration above a certain level
- Average value
- Time integral

Ionosphere Plasma Density Modeling Validation:

SSA-5, Scintillation Forecasting Capability

- foF2/NmF2, hmF2, vTEC, MUF
- In different latitude and local time sectors
- Complementary analysis of a set of metrics (e.g., RMSE, MAE, and Correlation Coefficient)
- For each physical quantity, the metrics will be calculated to measure ability to model
 - Climatological variations
 - Day-to-day variability
 - Storm impact (deviation from climatological estimates over storm events)

Neutral Density Modeling Validation: SSA-2, Satellite Drag Forecasting Capability

- Neutral density in the altitude range 200 ~800 km
- For comparison with accelerometer data:
 - Daily mean
 - Orbit averaged for satellite orbits
 - Model sampled at satellite locations, binned 5° along track
- For comparison with Emmert global mean daily data
 - o global-mean daily mean
- Compute ratios of Observed/Modeled

2013 March Storm Event (03/16-03/20) Study

- Global/Regional TEC: North American and European Sectors
- foF2/TEC:
 - 12 ionosonde locations in the mid-latitudes
 - 14 simulations using 8 models
 - o GIRO foF2 and GPS TEC
- Characterizing the Low-latitude Scintillation
- Neutral Density at LEO (e.g., GOCE, GRACE, Stella)

Climatology Study for Year 2012

- foF2/hmF2
 - monthly median (1 hr resolution)
 - 7 ionosonde locations in the mid-high latitudes
 - 4 model simulations
- Neutral Density at LEO (e.g., GOCE, GRACE, Stella)

Papers to be submitted for Space Weather Special Issue

- 1. "The iCCMC Ionosphere Validation Study: Overview and Initial Results", Ludger Scherliess et al.
- 2. "Assessment of Current Capabilities in Modeling the Ionospheric Climatology: foF2 and hmF2", Ioanna Tsagouri et al.
- 3. "Systematic assessment of Ionsophere/Thermosphere Models for Prediction of TEC and foF2 during the 2013 March Storm Event", Ja Soon Shim et al.
- 4. "Validation of Ionospheric Specifications During Geomagnetic Storms: Global and Regional TEC", Ludger Scherliess et al.
- 5. "Characterizing the Low-latitude Scintillation", Endawoke Yizengaw et al.
- 6. "Benchmark density data and metrics for thermosphere model evaluation 1: Semi-empirical models", Sean Bruinsma et al.